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We present evidence that the strong electron-electron (e-e) interactions in gapped carbon nan-
otubes lead to finite hierarchies of excitons within a given nanotube subband. We study these
hierarchies by employing a field theoretic reduction of the gapped carbon nanotube permitting e-e
interactions to be treated exactly. We analyze this reduction by employing a Wilsonian-like numeri-
cal renormalization group. We are so able to determine the gap ratios of the one-photon excitons as
a function of the effective strength of interactions. We also determine within the same subband the
gaps of the two-photon excitons, the single particle gaps, as well as a subset of the dark excitons.
The strong e-e interactions in addition lead to strongly renormalized dispersion relations where the
consequences of spin-charge separation can be readily observed.

PACS numbers: 72.15Qm,73.63Kv,73.23Hk

Gapped carbon nanotubes are the subject of intense
experimental [1–6] and theoretical interest [7–17] due to
their possible application as opto-electronic devices [1]
as well as providing a particularly clean realization of
strongly correlated electron physics in low dimensions
[9, 17]. Both interests converge in the study of the tubes’
excitonic spectra. This spectra, due to the effects of a
strong Coulomb interaction in one dimension, is strongly
renormalized from what would be expected from the un-
derlying band structure of the tube. Its computation
therefore requires a non-perturbative approach.

The favoured theoretical approach to studying the ex-
citonic spectra of carbon nanotubes is the use of a Bethe-
Salpeter equation combined with first principle input to
approximate the particle and hole wavefunctions that
form the excitons [10, 11, 13, 15]. This approach has been
particularly valuable in that it has allowed a quantitative
description of aspects of excitonic physics, in particular
the magnitude of the excitonic gap for the lowest lying
excitons in a given subband of the nanotube. In this
letter we step away from trying to describe quantitative
details of the excitons and instead focus on more qualita-
tive features. We do so using an approach that combines
a field theoretic reduction of the nanotubes identical to
that used to study Luttinger liquid behaviour in metallic
nanotubes with a numerical renormalization group that
enables one to study the effects of gapping out a multi-
component Luttinger liquid. In the process we find in a
regime of strong e-e interactions a number of new features
to the excitonic spectra (see Fig. 1).

First and foremost we find that a given subband of
the nanotube has a finite number of optically active one-
photon excitons, ∆1u,i, where the multiplicity depends
on the strength of the tube’s screened Coulomb interac-
tion. While a simple picture of excitons as analogs of the
excited states of a hydrogen atom [7] yields an infinite hi-
erarchy of excitons, we argue this series is truncated to at
most three. In order to understand the excitons’ binding
energy, we also study the single particle spectrum of the

tube. The single particle gap is strongly renormalized
by interactions and can be many multiples of the bare
bandgap. Consequently the lowest lying two-excitation
continuum, depending on strength of the Coulomb inter-
action, may be a particle-hole continuum or it may be a
two-exciton continuum. This approach treats all excita-
tions of the nanotube on the same footing. It thus con-
flates the difference between an exciton and a bi-exciton.
Indeed interactions can be sufficiently strong that exci-
tons should then be thought of equally as particle-hole
bound states or bound states of two other excitons.
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FIG. 1: A schematic indicating the position in energy of the
various excitons together with two-excitation continua arising
from our treatment at larger values of the effective interaction
(K−1

c+ ≥ 5). The bracketed numbers are estimates computed
at Kc+ = 1/7 of the absorption strength of the optically active
excitons, ∆1u,1−3 relative to ∆1u,1.

Our results are applicable both to semiconducting nan-
otubes and metallic nanotubes which have been turned
semiconducting by the application of an axial magnetic
field [8]. We derive results in the infinite bandwidth limit.
In the latter case where the gap is tunable and can be
made much smaller than the bandwidth this limit is di-
rectly accessible. However we find that our results remain
quantitatively accurate for gaps, ∆, an appreciable frac-
tion of the bandwidth, D, and even qualitatively accurate
for ∆ ∼ D.

We focus on a single subband of a carbon nanotube.
To describe this subband at low energies we introduce
four sets (two for the spin, σ, degeneracy and two for
the valley, α = K,K ′, degeneracy) of right (r = +)
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and left (r = −) moving fermions, ψrασ. The Hamil-
tonian governing these fermions can be written as H =
∫

dx(Hkin+Hgap)+HCoulomb. Hkin+Hgap together give
the non-interacting band dispersion, ǫ2(p) = v2

0p
2 + ∆2

0:

Hkin = −iv0ψ†
rασ∂xψrασ; Hgap = ∆0ψ

†
rασψ−rασ, (1)

where v0 is the bare velocity of the fermions and re-
peated indices are summed. For the Coulombic part of
the Hamiltonian we include only the strongest part of
forward scattering:

HCoulomb =
1

2

∫

dxdx′ρ(x)V0(x− x′)ρ(x′),

where ρ(x) =
∑

rασ ψ
†
rασ(x)ψrασ(x). The remaining for-

ward scattering terms as well as backscattering and Umk-
laap terms arising from the Coulomb interactions only
lead to weak deviations (on the order of a few percent)
to the gaps –unsurprising as they are less relevant, in the
RG sense, than the gap term. But as they lift the model’s
SU(4) symmetry, they will split the lowest lying 15-fold
multiplet of optically dark excitons.

To study the full Hamiltonian, we treat Hgap as
a perturbing term (albeit one to be treated non-
perturbatively) of H0 ≡

∫

dx(Hkin) + HCoulomb. The
latter terms are nothing more than the Hamiltonian of
a metallic carbon nanotube. In excitonic language, we
thus think of Hgap as a confining interaction on top of
the metallic tube. The advantage of doing so is that we
are able to treat Coulomb interactions analytically ex-

actly at the beginning of the computation. We do so
using bosonization.

If we bosonize H0 in terms of chiral bosons φrασ by
writing ψrασ ∼ exp(iφrασ), we arrive at a simple result
[17, 18]. The theory is equivalent to four Luttinger liquids
described by the four bosons θi, i = c±, s± (and their
duals φi)

H0 =

∫

dx
∑

i

vi

2

(

Ki(∂xφi)
2 +K−1

i (∂xθi)
2

)

. (2)

The four bosons diagonalizing H0 are linear combina-
tions of the original four bosons and represent an effec-
tive charge-flavour separation where θc+ =

∑

rασ rψ̃rασ

is the charge boson and the remaining three bosons reflect
the spin, valley, and parity symmetries in the problem.
The charge boson is the only boson to see the effects
of the Coulomb interaction. Both the charge Luttinger
parameter Kc+ and the charge velocity vc+ = v0/Kc+

are strongly renormalized. In particular for long range
Coulomb interactions, Kc+ takes the form

Kc+ =

(

1 +
8e2

πκ~v0

(

log(
L

2πR
) + c0

)

)−1/2

, (3)

where κ is the dielectric constant of the substrate, L is
the length of the nanotube, R is the tube’s radius, and

c0 is a wrapping vector dependent O(1) constant[16]. In
typical nanotubes Kc+ can take on values in the range
of ∼ .2. With an electric field applied transversely to the
tube, Kc+ can easily be made as small as .1 [16]. The re-
maining Luttinger parameters, Ki, i = c−, s± retain their
non-interacting values, 1, and so their velocities, vi = v0
go unrenormalized. Including the full forward scattering
leads to a small (upwards) renormalization (on the order
of less than a percent) of these parameters which we will
not consider here [17].

Under bosonization, Hgap becomes

Hgap =
4∆̃0

π
(
∏

i

cos(
θi

2
) +

∏

i

sin(
θi

2
)), (4)

where ∆̃0 = ∆0(Λ/vc+)(1−Kc+)/4 and Λ is an effective
bandwidth of the tube arising from bosonization (and
not equal to the tube’s true bandwidth). This gap term
is highly relevant. Rewriting the gap term in this fashion
already gives us important generic features of the exci-
tonic spectrum. Firstly, as a perturbation of H0, Hgap

has the anomalous dimension, 3/4 +Kc+/4. In turn this
implies the full gaps, {∆α}α, satisfy the scaling relation,

∆α = Λ(
∆0

Λ
)4/(5−Kc+

)fα(Kc+), (5)

where {fα}α is a set of a priori unknown dimensionless
functions of Kc+. We will see that for the excitons, fExc

is a relatively weak function of Kc+ while for the sin-
gle particle excitations, fsp depends strongly on Kc+.
This scaling relation tells us immediately how exciton
gaps scale between subbands. If we take a large radius
tube where the first and second subband gaps scale as
∆0(n,R) ∼ n/R, n = 1, 2, the expected gap ratio be-
tween the two is 24/(5−Kc+) ∼ 1.78 (this is in rough cor-
respondence to that reported in [2] and so provides a
straightforward explanation of the ratio problem [12]).
Secondly, Hgap takes the form of a perturbation of a
generalized sine-Gordon model (involving four bosons in-
stead of one). We thus expect that excitons (within a
given subband) will come in hierarchies whose size is de-
termined by the value of Kc+ very much like the number
of bound states in a sine-Gordon model, a perturbation
on a free boson of the form cos(βθ), is determined by the
parameter β.

Having completely characterizedH0, we study the con-
fining effects of Hgap using the truncated conformal spec-
trum approach (TCSA) [19] combined with a Wilso-
nian renormalization group modeled after the numeri-
cal renormalization group (NRG) used to study quan-
tum impurity problems [20]. This methodology permits
the study of arbitrary continuum one dimensional theo-
ries provided one can write the theory as the sum of a
gapless theory, in this case H0, plus a perturbation, here
Hgap. It is flexible enough that it can play the same role
as DMRG does for lattice models (although as it is an
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NRG, it accesses matrix elements more easily). Among
the first uses of the original TCSA, unequipped with an
NRG, was to study a quantum Ising model in a magnetic
field [19]. The model we study here, in terms of compu-
tational complexity, is equivalent to eight coupled Ising
models and so could not be studied using the TCSA with-
out the accompanying NRG. Additional details of the
application of this approach can be found in Ref. [21].

Our results for the gaps as a function of Kc+ are pre-
sented in Fig. 2 (with details of of the numerical analysis
relegated to Ref. [21]). We first consider the one-photon
optically active excitons (labelled ∆1u,i, i = 1, 2, 3 where
here u refers to the antisymmetry under π−rotations
about the centre of a carbon hexagon). We see that as
Kc+ decreases (i.e. the effective Coulomb interactions be-
come stronger) the number of one photon excitons grows.
At Kc+ ≥ 1/5 the number of such excitons goes from one
to two, while at Kc+ ≥ 1/6 the number of such excitons
goes from two to three. But thereafter this number satu-
rates. Our finding of three stable excitons for Kc+ ≤ 1/6
is robust: it survives even when ∆1u,3 ∼ D/2 where D is
the bandwidth.

There are two limits on stable excitons in the sys-
tem – the beginnings of both the particle-hole contin-
uum (marked in dark green in Fig. 2) and a two-exciton
continuum (marked in maroon in Fig. 2). Necessarily ex-
citon gaps cannot cross over these boundaries lest a decay
channel opens to the exciton. The bottom of the particle-
hole continuum is twice the single particle gap, 2∆sp. As
∆sp is a strong function of Kc+ (going as ∆sp ∼ K−1

c+ ), at
small Kc+ there is room for additional excitons. This is
very much like the sine-Gordon model where as β goes to
zero, the number of bound states goes to infinity. How-
ever for an exciton to be stable it must also fall below
a two-exciton continuum. This two-exciton continuum,
formed from the lowest single-photon exciton, ∆1u,1, and
the lowest two-photon exciton, ∆2g,1, is relatively insen-
sitive to Kc+ and serves to provide a bound on the total
number of possible excitons at small Kc+.

In bosonized models considerable intuition can be had
by considering the classical limit and asking what are
the classical field solutions that correspond to the exci-
tons/bound states. This is true here as well. The first
one-photon exciton, ∆1u,i, corresponds to a breather-like
solution of the field equations governing H0 +Hgap. This
solution corresponds to θc+ interpolating between 0 to
4π and back to 0 while the other three bosons remain
fixed at 0. It takes the form

θc+(x, t) = 4 tan−1

√
1 − ω2 cos(ωt)

ω cosh(
√

1 − ω2x)
, (6)

where ω is related to the (classical) energy of the
breather. We can estimate the energy corresponding
to quantizing this classical solution via mean field the-
ory. Replacing Hgap by 4∆̃0/πΞ3 cos(θc+/2), where Ξ ≡
〈cos(θf/2)〉 with θf = θc−, θs+, or θs−, we reduce the
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FIG. 2: The Kc+ behavior of the excitons and single particles.

model to a pure sine-Gordon theory. ∆1u,1 is then equal
to the gap of this theory’s first bound state [23]

∆1u,1
MFT = 2

(

2∆̃0Ξ
3 Γ(1 − α

2 )

vα−1
c+ Γ(α

2 )

)
1

2−α

2Γ( ξ
2 ) sin(πξ

2 )√
πΓ( 1

2 + ξ)
, (7)

where α = 1/4K2
c+ and ξ = α/(2 − α). Ξ is

determined self-consistently by replacing Hgap

with 4∆̃0π
−1Ξ2〈cos(θc+/2)〉 cos(θf/2) and using

[22] to express Ξ in terms of the effective cou-
pling constant 4∆̃0π

−1Ξ2〈cos(θc+/2)〉. We conse-
quently find that as K−1

c+ varies between 2 and 10,

∆1u,1
MFT /(Λ(∆0/Λ)4/(5−Kc+)) varies from 3.1 to 4.1 in

reasonable agreement (if shifted upwards) with the
non-perturbative NRG.

The second one-photon exciton, ∆1u,2, has a gap a
little more than twice that of ∆1u,1 and corresponds to
roughly the putative location of ∆1u,1

2 SB, the first exciton
in the second subband (which we have argued, by scal-
ing, is found at ∼ 1.8∆1u,1). If we were to take into
account intersubband Coulomb interactions, hitherto ig-
nored, ∆1u,2 and ∆1u,1

2 SB would mix leading to a set of
hybridized states. It is thus conceivable that reports of
observations of the exciton ∆1u,1

2 SB are in fact seeing ∆1u,2

or at least some hybridized combination of the two.

Beyond the one-photon excitons, Fig. 2 also displays
the gaps of a number of other excitons. It shows the
single existing two-photon exciton, ∆2g,1 (here g cor-
responds to excitons which are symmetrical under π-
rotations about a centre of a carbon hexagon). Unlike
the one-photon excitons, there is only a single stable two-
photon exciton regardless of the value of Kc+. Lying
just below ∆1u,1 are found a set of 15 dark excitons with
energy ∆dark. These excitons subsume the dark triplet
excitons but are of greater degeneracy because they not
only carry spin quantum numbers but valley quantum
numbers as well (dark excitons with non-trivial valley
quantum number were termed K-momentum excitons in



4

0 0.5 1 1.5 2 2.5 3 3.5
Momentum, p (∆0/v0)

3

4

5

6

7

8

9

10

11

12

ex
ci

to
n 

en
er

gy
 (Λ

(∆
0/Λ

)4/
(5

-K
c+

) ) ((∆1u,1
)
2
+(vc+p)

2
)
1/2

((∆1u,2
)
2
+(v0p)

2
)
1/2

E
1u,2

(p)

E
1u,1

(p)

FIG. 3: The dispersion of the first two excitons ∆1u,1 and
∆1u,2 for Kc+ = 1/5. Dashed lines in the small momentum
regions connecting data points are guides to the eye.

Ref. [5]). As the full symmetry of H is SU(4), the dark
excitons transform as SU(4)’s adjoint. At twice the en-
ergy of ∆dark begins a two exciton continuum into which
any two-photon exciton will decay. As ∆2g,1 is just below
2∆dark, this two exciton continuum essentially precludes
any two-photon excitons with energy greater than ∆2g,1.

By examining the momentum dependence of the exci-
tons’ dispersions, we can see the consequences of having
two velocities, charge, vc+, and flavour v0 = vc−, vs±,
in the system. The above semiclassics suggests that
the initial dispersion of ∆1u,1, E1u,1(p), will behave ap-
proximately as ((∆1u,1)2 + p2v2

c+)1/2 (a consequence of
it involving θc+ degrees of freedom alone). We expect
∆1u,2, to lie primarily in the spin/flavor sector and so it
will disperse with the much smaller velocity, v0. While
∆1u,2 > ∆1u,1, that vc+ ≫ v0 means the dispersion
of ∆1u,1 will intersect ∆1u,2 at a (small) momentum,
pint = (((∆1u,2)2−(∆1u,1)2)/(v2

c+−v2
0))1/2. At this inter-

section the two states will hybridize, and so for momenta
larger than pint, ∆1u,1(p > pint) will disperse with an
effective mass determined by v0 whereas ∆1u,2(p > pint)
will now vary according to the much larger vc+.

We observe this general behaviour in our numerical
analysis. Plotted in Fig. 3 are the dispersions of these
two excitons for K−1

c+ = 5. We see that E1u,1(p) in-
creases extremely rapidly for momenta up to p ∼ ∆/2v0
but thereafter levels out, even decreasing. This increase
is greater than would be predicted from the relativistic
dispersion, ((∆1u,1)2 + p2v2

c+)1/2, suggesting that charge
and spin, even at the smallest momenta, are intricately
linked, leading to an even stronger renormalization of the
effective mass. If however we combine the renormaliza-
tion due to vc+ with the logarithmic correction p2log(p),
to the exciton self-energy, [12, 13] we can understand the
observed behaviour. Complementarily, E1u,2(p) initially
displays a weak momentum dependence but then in-
creases with a velocity approximately vc+/2 for p > pint.

Finally we touch upon the excitonic signal in ab-
sorption spectra. This signal is proportional to the
imaginary part of the current-current correlator. It is

straightforward to compute the necessary matrix ele-
ments of the current operator within the framework of
TCSA+NRG.[20] We find, as indicated in Fig. 1, that
∆1u,1 has by far the strongest signal. While ∆1u,2 should
be visible in an absorption spectra, ∆1u,3, with a weight-
ing 1/1000 of ∆1u,1 is effectively dark although could be
detected indirectly through its effects on the temperature
dependence of the excitonic radiative lifetime [13].

In conclusion, we have argued for, using a fully many-
body, non-perturbative approach, new features in the ex-
citonic spectrum of carbon nanotubes. We have shown
that with a given subband, optically active excitons ap-
pear in finite hierarchies. We have also shown that the
single particle sector experiences extremely strong renor-
malization so swapping the beginning of the particle-
hole continuum with the two-exciton continuum. Fur-
ther work will include studying the effects of backscatter-
ing interactions in the tubes (not treated here) together
with intersubband interactions. More generally, we have
demonstrated a robust method able to treat continuum
representations of arbitrary one-dimensional systems.
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